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The problem of motion of an interceptor spacecraft along a three-dimensional trajectory 
in a central gravitational field is considered ; this trajectory is the mapping in the invo- 
lute plane of the shape, dimensions, and orientation of the Keplerian orbit of the target 

spacecraft. Control laws which 

Fig. 1 

yield analytical solutions of the encounter problem are 

chosen. The active spacecraft is referred to as the “in- 
terceptor”, the passive spacecraft as the “target”. 

1. The motion of the interceptor under the control- 
ling acceleration W applied to its center of mass O1 is 

described by equations in the rotating right-hand ortho- 
gonal coordinate system Oryz whose y-axis coincides 
with the radius vector constructed from the attracting 
center 0 to the point 0,, and whose r-axis coincides 

with the direction of motion in such a way that the vec- 
tor of the absolute velocity of the interceptor’s center 
of mass lies in the SI, -plane. The orientation of the 
axes .TYZ relative to the inertial coordinates is defined 

(see Fig. 1) by the longitude P of the ascending node, 
the inclination i of the instantaneous orbital plane to the equator, and the range angle 

a. The equations of motion of the center of mass of the interceptor are 

11X* = I+-% + Of v, ) L’, . = w, - w,v, - g (1.1) 

0 = TV, + oJx, 0, = -Vx / r, g = go (I?, / r)’ 

The rates of change of the angles defining the orientation of the rotating axes relative 
to the inertial axes are given by the differential equations 

rzs2 sin u di du 
- = q) - 
tit smr ’ ;zi = coy c,Os u, z = - 0, - my sinuctgi (1.2) 

We shall make our choice of the control law for the motion of the center of mass of 
the interceptor subject to the conditions of integrability of equations of motion (1. l), 

(1.2); moreover, we shall restrict its choice to the class of functions in which the con- 
trol constants ensuring convergence of the spacecraft can be determined with sufficient 
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ease. 

We showed in rll that kinematic equations (1.2) are integrable regardless of the con- 
trol law for the motion of the center of mass of the interceptor in the involute plane if 
the projection of the controlling acceleration on the direction perpendicular to the instan- 
taneous orbital plane varies according to the law 

W,=Kv,“Ir (K = const) (1.3) 

The presence of a controlling acceleration IV, implies motion of the orbital plane of 

the interceptor. By suitable choice of the quantity K in control law (1.3) and of the 
instant of its actuation we can ensure coincidence of the orbital planes of the intercep- 

tor and target. This is the control law for the motion of the orbital plane which we adopt 
in the present paper. 

The motion of the interceptor in the involute plane along a trajectory having the shape 
and dimensions of the target’s orbit is subject to the constraints 

2h tge=f ~ar2+br-I, acc2, b=@$t (1.4) 

rp’pk = ‘ql$ for t = tk 

Here h is the constant of the energy integral, C is the constant of the interceptor- 

target area integral, the subscripts p and q denote the interceptor and target, respectively, 
and 8 is the angle of inclination of the absolute-velocity vector V to the local horizon. 
This constraint was obtained by transforming the energy and interceptor-target area inte- 

grals. The first two equations of (1.1) describe the motion of the interceptor in the invo- 
lute plane. The polar angle between the initial and final positions of the radius vector 
of the interceptor’s center of mass in this plane is given by 

‘1, 

J=- O,& 
s 

(1.5) 
to 

Knowing this angle, we can determine the required value of rpo at the start of the con- 

trolled motion which ensures fulfilment of the second condition of (1.4), and also the 

angle epO. 
In fact, I’, = v, tge (Vy = r’) (1.6) 

and, recalling (1.4) and the fourth equation of (1.1). we obtain 
‘p 

J= 
rro r l/a? t; br - 1 \ 

for A=-4a-bb2#0 (1.7) 

The angle J in the segment of the interceptor’s trajectory where W, = 0 must be 
determined from the initial conditions. -Over the segment where W, # 0 the angle J 

is given by the formulas Cl] 
x 

k 
dz sign (K cos u) 

~-(1+K2)~2+2kx+K~-~ 
(x = cos i) 

cosi - K sinu sini = k, k= cos i,, - K sin u. sin& (i-3) 
xk 

BI,-QQ,= ’ 
j 

(x -k) sign (K co3 u) dx 

(2” - 1) f- (1 + K2) 9 + 3kx + K2 - k’J 
x0 

The quantities K and k can be determined by substituting the given values of S&J, i,, 
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62,. i,, ‘Lo into Eqs. (1.8). where the subscripts 0 and k denote the start and termination 

of the maneuver of rotating the orbital plane until it coincides with the orbital plane of 

the target. 
The resulting value of the integration constant k can be used to find the range angle 

u0 whose attainment coincides with the start of controlled motion of the interceptor’s 

plane. 
Thus, if the time interval between the beginning and end of controlled motion in the 

involute plane is larger than the time interval between the beginning and end of the 
orbit rotation maneuver, i. e. if the former interval includes the latter, then the angle J 
breaks down into three parts on a unit sphere: the motion over the first and last parts is 
along great-circle arcs; the motion over the middle part of the angle proceeds along 
the curve defined by Eqs. (1. 8). The curve is a minor-circle arc. 

2, The first equation of (1.1) is integrable if 

IV2 = f (t) I r (2.i) 

The structure of f (t) will be determined when we synthesize the control laws (see 
below). Integrating this equation, we obtain 

Integrating Eq. (1.6) with allowance for (2.2) and the first equation of (1.4). we obtain 
t 

s ‘p @I dt = ‘pl @I 
to 

(2.3) 

The set of equations (1.4)-( 1.8). (2.2). (2.3) completely defines the motion of the 
interceptor in time. The next step is to find the law for the controlling acceleration W, 
which ensures fulfilment of constraint (1.4). Transforming (1.6) with allowance for( 1.4) 
and (2.2), we obtain 

V, = f ‘+ Jfa+ + br - 1 (2.(t) 

Differentiating this equation and combining the result with the second equation, we 
obtain the general form of the required control law, 

i (4 
( 

‘p2 PI\ 
W”=(P(t)r’+g i-F, (2.5) 

3. Synthesis of the structure of control laws (2.1) and (2.5) begins with determination 
of the conditions ensuring contact of the interceptor and target with a prescribed ratio 
of their velocities V,,/V,,. Transforming Eqs. (2.2) and (2.4), we obtain 

vPk f Vqk = q (tk)‘/ c, vqk = c ? arka + brk/ rk 
(3.1) 

Here V,, is the velocity of the center of mass of the target at the point of contact. 
Since 6, = 6, at this point, it follows that 

Vrpl v XQ = hp / bQ = q @k)l c 

Equation (3.1) yields the first condition 
tP (tk) = cl (3.2) 

which the required control laws must satisfy. According to (2.3) the second condition is 

‘PI (tk) = c, (3.3) 

Relations (3.2), (3.3) imply that the function f (t) must depend on at least two 
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parameters, i.e. f (r) = f (a,, tcl. t). 
In the simplest case where the target is a satellite moving in a circular orbit and con- 

trol of the motion of the interceptor’s orbital plane coincides in time with control in the 

involute plane, the function f (t) can be found from the minimum condition for the 
functional 

‘k ‘k 

J = 
s 

JYW, w = Jt’,? + IV,2 + w,z for G= cp(t)dt= Cz 
s 

(3.4) 
to fo 

Differentiation of (2.2) yields the relation 

9’ (L) = f (t) (3.5) 

For r = const we have c” = gra, and the second equation of (3.4) with allowance for 
(2. l), (2.5), (1.3) and (3. 5) becomes 

W2 = ((P’~+ ai(p4 + a,cp + aa) I r’“, al = (K2 + l)/r4, '2 a2 = -ag/r, a3 = g2r2 (3.6) 

Thus, Eqs. (3.4) with allowance for (3.6) reduce to the isoperimetric problem of vari- 
ational calculus in which the required control is an extremum of the integral 

fk 

Ji = 
s 

( W2 + hq)) dt = mjn (h = const) (3.7) 
fo 

Integrating the Euler equation for functional (3.7) with allowance for (2.1) and (2.2), 
we obtain 

‘paa = al(p4 + a,cp2 + hfv + W,$r2 - (K2 + I)Vo4 + 2grVZ - JJoP 

This equation reduces to the quadrature 
Q 

QoiI/y*+bly’+bsy+b3 = - s 

d!l (t - L")Jh-~ + 1 zg?J 

rs 
, blzz--- 

K2+ 1 

(3.8) 
hr6 

bz=K”+, , b3 = K& [Wxcr2 - (K’ + 1) 1’0~ + 2qrVo’ - hV09] 

The form of the solution of Eq. (3. 8) depends on the roots of the equation 

y4 + bly? + b,y + b, = 0 

However, these equations can be expressed in terms of elliptical integrals of the first 
kind in every case. Inversion of the elliptic integral yields the function ‘p (t), which is 
a third-degree polynomial when two terms are retained in the expansion. 

The parameters h and FVz,can be determined from boundary conditions (3.2). (3.3). 
If it is necessary to find the control of simplest mathemntical structure, them we can 

take f (t) = a, + al t (3.9) 
Then, recalling (2.2) and (2. 3), we obtain 

cp (t) = a,t + %alt2 + a2 (a2 = IiXoro) 
‘PI (t) = ‘/*aot2 + VoWa + a.$ (3.10) 

for to = 0 The control parameters co and ai can be found from Eqs. (3.10) for t = tk 
with allowance for boundary conditions (3.2) and (3.3). Having determined the coeffi- 

cients a, and a,, we assume that we have determined control laws (1.3), (2.1) and (2. 5), 
provided the absolute value of the controlling acceleration W satisfies the inequality 

Jy,in (t) < w (t) < w,,x (t) 

If this inequality is not fulfilled, then the final conditions (i. e. the neighborhood and 
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time of interception) for given initial conditions are altered ; conversely, the initial con- 

ditions are altered for given final conditions, 
Control law (3.9) is valid for interception of a target in any orbit, be it circular, etlip- 

tical, parabolic, or hyperbolic. 
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We consider a control system described by an nth order differential equation with random 
coefficients. Necessary and sufficient conditions of existence of a linear control stabi- 

lizing such a system in the mean square and conveying a minimum to the quadratic 
quality criterion are obtained. The problem of stabilization of a stochastic system in 
which the noise depends on the magnitude of the controlling force was also studied in 

VI. 
1. Let a linear stochastic system be given, defined by the following nth order differ- 

ential equation : 

where 
y(n) + [a1 + %i (t)lY @-w + . ..+ [a, + Cn’(t)]y = ie + aq’ (t)lu (1.1) 

ai = const, bi = con& # 9 (i = 1,2,...,n) 

Al is a scalar control, E:‘(t) are the Gaussian white noises with zero mathematical expec- 
tation which are,in general, interrelated in such a way that 

M&’ (t) %j' (S) = 2Ui$ (t - S) 

and n’ (t) is a white noise process inde~ndent of the set &+ (t),...,%,‘(t) , In addition 

Mn’ (1) = 0, JQ’ (W (4 - 26 (t - 5) 
Let us set 

$i = x1, y’ = X,,...,y@--‘I= x, 

Then (1.1) can be assumed to represent a system of stochastic differential Ito equa- 

tions (see e. g. 121) dxr = x,dt, dX, = X,dt,...,dX,l = X,dt (I.21 
n 

dXn = - c 2 I aiXn-i+l + bu) dt - i %jX,_,,, dqJ (4 -I- a dq PI 
i=l 4, j=l 

where rll, q2,..., tin and 11 denote mutually independent Gaussian Markov processes for 
which Mq’+ (t) = 0, Mq32 (t) = 2t 

and the matrix 1/Q+j \I is obtained from the condition 

II a% j II II “ji II = Il’il II 


